A/ Tečnice a težište trojúhelníků (str. 44-45)

1. Tečnice - úseky, které spojují vrcholy trojúhelníku s středem jeho protější strany.

Težište T - prosečí tečnic

\[T_a = \text{tečnice ke straně } a; \quad S_a = \text{strana } a; \quad A_a = \text{střed } a; \quad T_b = \text{tečnice ke straně } b; \quad S_b = \text{strana } b; \quad A_b = \text{střed } b; \quad T_c = \text{tečnice ke straně } c; \quad S_c = \text{strana } c; \quad A_c = \text{střed } c; \quad T = \text{težište} \]

2. Pohanu!

Težište rozděluje tečnicí na 2 části.

Vzdálenost težiště T od vrcholu je dvakrát větší než vzdálenost težiště od středu protější strany.

\[|AT| = 2 \cdot |TS_a| \]
\[|BT| = 2 \cdot |TS_b| \]
\[|CT| = 2 \cdot |TS_c| \]

3. Tečnice v trojúhelnících

a) Rovnoramenně

\[a = a; \quad A_a = A_a; \quad a = a \]

b) Rovnostranně

\[a = b = c \]

(vyskytují se tečnici)

B/ Střední průběžné trojúhelníku (stříd. str. 150)

Střední průběžné - úseky, které 1) spojuje strany 2 stran, se 3. stranou je rovnoběžné.

3. střední průběžné \(S_aa \), \(S_bb \), \(S_cc \)

2. část středního průběžného se rovná polovině části strany, se kterou je rovnoběžné.

3. \[\Omega_{ABC} = \frac{2}{3} \cdot \Delta S_aS_bS_c \]

Obvod \(\triangle ABC \) je čtvrtá větší než obvod \(\Delta S_aS_bS_c \).

4. Střední průběžné rozděluje \(\triangle ABC \) na 4 střední trojúhelníky.

Poznámka: (NEOPYSU!)

1. Narysuji nejprve trojúhelník
2. Nájdě středky stran (stranu zmaří, střed letí, v polovině strany)
3. Narysuji tečnici nebo střední průběžné (podle zadaní příkladu)